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ABSTRACT . .... .

We study the limiting distribution of the amount of charge left in some set by an
infinite system of charged Markovian particles, when the charge distribution belongs
to the domain of attraction of a symmetric ca-stable law. The limits are symmetric
a-stable generalized random fields. Their multiple integrals are built in a similar
manner. We also study the renormalizability of these families of random fields and
use the construction to simulate stable fields on R1 and R2.

1. INTRODUCTION

Stable processes have been studied intensively in recent years. Samorodnitsky
and Taqqu (1990), Weron (1984), Rosinski and Woyczynski (198j), Rosinski (1986),
Kallenberg and Szulga (1989), Szulga (1992), Maejima (1990), Janicld and Weron
(1991), are some of the references related to this work. Because all these authors work

0 on an abstract measurable space, or with specific models on R1 , we were motivated to
*4 define families of stable random fields on Rd, d > 1, and of generalized stable fields on

the Sobolev space Sd. We build the fields as liuts of sums of functionals on paths of
Markov processes and show that using this construction one can easily analyze some
of the properties of the fields in the limit.

Motivated by work of Maejima (1990) on self-similar stable processes, we choose
to study the renormalizability of the families of stable fields and their functionals.
The property of renormalizability of families of random fields was defined in Adler

S and Epstein (=Feldman) (1987) and Epstein (1989), as an extension of the property 4b
of self-similarity to families of fields. These authors discuss the renormalizability of
families of Gaussian fields. Here we show that stable fields built from self-similar 0
Markov processes are renormalizable.

Our method of construction of the stable fields also allows us to simulate these _.
fields on a computer and display the surfaces to see what they look like. Our moti- I
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vation in this direction comes from work of Janicki and Weron (1991) on simulation
of stable processes (all on R1 ).

We now look at our results from a somewhat different point of view. In recent
years, much attention has been given to the description of infinite systems of particles
moving according to some law (usually Markovian). Some of these papers e.g., Adler
and Epstein (1987) and Adler (1989), deal with particle systems which behave as
follows: Initially (at time zero) a number of independent particles pop into existence
at locations within the space Rd, according to a Poisson point process with intensity
A. (Actually the initial distribution of the particles was created differently in the
above papers, but one could use Poisson point processes instead.) The particles then
move according to some Markov law. A positive or'negative charge is assigned to
each particle initially, according toa Radenacher random variable. The charge of
each decays exponetially with time. The number of particles in the system is then
set to infinity and the limiting distribution of the charge left by the system in a
set in Rd, after all the particles have lost their charge, is studied. The limiting field,
which is indexed by sets, or more generally by functions, was shown to hive a Gaussian
distribution in Adler and Epstein (1987). In Feldman and RFachev (1993), the authors
obtain limiting fields that have sub-Gaussian, Laplace and other distributions, by
changing the initial distribution of the particles appropriately.

The second aim of this work is to answer the question, "What happens to the
limiting charge distribution if the initial charge of each particle follows a symmetric
a-stable law?"

As in the above-cited work, our main tools are limit theorems for U-statistics.
Here we use results found in Szulga (1992) on the convergence of resampled U-statistics
to multiple stable integrals.

This paper is organized as follows: In Section 2, we present our construction of
generalized stable random fields and their multiple integrals. The proofs are given in
Section 3. In Section 4, we show how to construct stable fields on Rd. In Section 5 we
study the renormalizability of the families of stable fields and their multiple integrals.
Section 6 is devoted to simulation results for some stable processes and fields on R1
andR 2 . CNO

2. STABLE RANDOM FIELDS AND THEIR FUNCTIONALS.

Let us now define the particle system of the Introduction precisely. On an
arbitrary probability space (f, ', P), take n independent symmetric Markov pro-
cesses V1, V2,..., Vn with values in Rd, each process starting according to some
finite initial measure m. Let pt(z, y) be their common transition density function;
pt(z, Y) = pg(y,z), x, Y E Rd, t >_ 0 and fRdpt(z, y)dy = 1, for each x E Rd. The
corresponding Green's function is given by

-cesion For

g(,Y) -g 1(z,1i), g8(X,Y)= [1e)pt(zy)dt, (1)
JO rIS CRA&I

FIC TAB
If V is one of the processes in the sequence, then it can be thought of as describing )annouticed
the motion of a particle in the system. We now discuss the charge assigned to each ,stijfcatio,_
of the n particles. Let the probability space be rich enough to support the sequences -..

of i.i.d. random variables, Yn,h, Yn,2 ,... , Yn,n, which are independent of the V's and,
for which dtributton i

P(y_,i > 0= f - 1 for t > (acanf-/a (2) Availti rone

ft A !;;j/ or

where Ca = fR\{o}(1 - cosx)dz/zl+a. Let 01, 02,... -,,,... be a sequence of i.i.d.
Rademacher variables (on the same probability space), i.e., P(oi = 1) = P(ui =
-1) = 1/2, which are independent of the V's as well as the Y's. Assign to each



particle Vi a charge 'iYn'i. We will call aiYni the charge associated with the Markov
particle Vi. The particle charges clearly belong to the domain of attraction of a stable
law.

We now describe the evolution of the system in time. When particle i with charge
aiYn,i at time t passes through a point x in the space Rd, it leaves there a charge
aiYn,ie- t . Let A E B(Rd) be a Borel set in the space Rd. We would like to find the
amount of charge left in the set A after all particles have lost their charge and in the
limit of increasing initial particle density, i.e., we are interested in finding the limiting
distribution, as n --+ oo, of the normalized sum

n
4n.(A) := iYnie-tlA(Vi(t))dt.

More generally, define the bilinear form

(f,h) _= (f,f)m :-/Ra• m(da)dz dy f(z)g 2 (a, z)g(x, y)f(y) (3)

where g and g2 were defined in (1). Let Sd =- Sd(g) be the Sobolev space of C~'
functions of finite norm, where the inner product in Sd is given by (3). For f in Sd
we define the functional of the space of the paths of the Markov process V by

F1 (V) = j e- tf(V(t))dt (4)

Then, we study the weak convergence, as n -+ oo, of the finite-dimensional distribu-
tions of the sum

n
In~f) -- O iYn,iFf(NO (5)

i=1

Clearly, if (If 1, If 1) is finite for all functions f from the Schwartz space of C' functions
that decrease at infinity faster than any polynomial, we can take the Schwartz space
as the index set of On. This is possible, for example, when the Markov process V is
Brownian motion.

We now define the limiting field. A random variable X is said to have a symmetric
a-stable (SaS) distribution if its characteristic function is given by

Eexp{itX} = exp -o-atl } (6)

The SaS distribution is thus characterized by index a, 0 < a < 2, and the scaling
parameter a'. A stochastic process is SaS if all its finite-dimensional distributions are
SaS, i.e., ifi any linear combination of its components is an SaS random variable. On
a separable finite measure space (T, T, p) let X(.) be a SaS Lery random measure
with control measure # and Levy measure v(dz) = c¢ldx/l-l-a, where ca is as in
(2). This means that
i) for every A E T, X(A) is a SaS random variable with characteristic function

Eexp{itX(A)l exp = -p(A)ItI*},

{xp JAIJR\{OJ(1 - costz)v(dx)1&(ds)}(7

(1i) X(.) is independently scattered and a-additive, i.e., for disjoint sets Al,,... ,

in T, the random variables X(A 1),_... ,X(Ak) are independent and X(Uj'iAj)

= X(A,).



We will denote by Xf the integral of f with respect to measure X and by Xkf
the multiple integral of order k with respect to measure X. The construction of these
is given in Kallenberg and Szulga (1989).

Now we choose a specific separable finite measure space (T, T, p). Let T =
D([O, oo)) denote the path space of the Rd-valued Markov process V, let B(T) = T
denote the Borel o-algebra of the cylinder sets in T, and let p denote the measure
induced by the process V. Thus, V, V1, V2.... are i.i.d. random variables uniformly
distributed on (T, T, p). Take X(-) to be a SaS LUvy random measure on (T, T, p)
with control measure p.

A family of random variables {f(f), f E Sd} is called a generalized random field
if the following two conditions hold:
(a) 9 is a linear random functional, i.e., f(af + bh) = a$(f) + b6(h) a.s. for all f,
lE Sd, and all a, b E RA
(b) 4 has a version with values in the dual space Si.
Recall from (4) the definition of the functional F1 on space T. We now consider a
family of random variables

{11(f), f E Sd} D {J Ft(u)X(du), f E Sd} (8)

Proposition 1. Let 0 < a < 2. Then (8) defines the generalized stable random field
on Sd such that for every f E Sd and t E R,

Eexp{it§(f)} = exp {ItlaJ IFj(u)I' I(du)},

- exp {-ItIaE [Ff(V)I•} (9)

Theorem 2. Let 0 < a < 2. As n -+ oo, the finite-dimensional distributions of
{O,(f), f E Sd} converge weakly to those of the stable random field {14(f), f E Sd).

In order to construct a kth order integral with respect to Ivy random measure
X, we have to consider systems of k Markov processes. For a function fk of k variables,
define the functional

Fjk(Vi,...,Vk) := j ... jo e-t'-'"-h f(Vtil),,...,Vk(tk))dtl...dtk (10)

Since
ElF1 (V I i,., ) 2 _ (f k),f k > 1, (11)

where

(fk, hk) := JRUI m(da)ft(x)g2 (a, x)g(x, y)ht(y)dxdy (12)

A(x,y) = g(xl,Yl) ... g(xk,yk), 92(a,x) = g2 (a1, x).. .g 2 (ak,-k) (13)

(see Feldman and Rachev, 1993), we restrict our parameter set to functions from the
space

S Sd(g) :- {fk : = f(zI,...,I&) symmetric in C(O(Rdk) with (tfkI1tfk1) < oo}

(14)
We are interested in studying the limiting distribution, as n -- oo, of the normalized

sui< ...m<iL <n



, Proposition 3. Let 0 < a < 2. The field

(*(f),f E dk) {XkFfk , fk E Skd}

is welldl defne and is a fk E Sk} (16)

is well defned and is. a generalized random field on S.

Theorem 4. Let 0 < a < 2. As n -. oo, the finite-dimensional distributions of

(tf~fk, f E dý)converge weakly to those of {I (fk), 1k E Sd}.

3. PROOFS

We will now present the proofs of the results stated in Section 2. We start with
the following lemma.

Lemma 5. For 0 < a < 2 and every f E Sd,

IT iFf(u)Iep(du) < ((f, f))al 2 < 0 (17)

Proof. Use Lyapunov's inequality (p. 191 of Shiryayev, 1984) and (11) to get

IT IF j(u)Icro(du) =E IF (V)I@ < (E IF t(V) 12) (( ) /1P - IP - ( (f , f) )a12 <

The proof is complete.
Proof of Proposition 1. The functional, F(V) 1 o' e--f(V(t))dt = F(f, V) is
jointly measureable on Sd x T. Moreover, for each fxed f E Sd, Ff(V) E L`(T) (by
Lemma 5). Thus, (cp. Rosix•ski, 1986) the integral in (8) is well defined. Therfore
4 has the integral representation given by (8) and (cf., (3.2.2) Samorodnitsky and
Taqqu, 1990), its distribution is specified by (9). It remains to be shown that 4 is a
generalized field. Clearly, I is linear. By Corollary 4.2 of Walsh (1986), continuity in
probability assures that the field has values in the dual space Sd.

By Theorem 2, p. 254 of Shiryayev (1984), and the linearity of 4, it is enough to
show that

wj(t) --+ 0 in Sd as j --- eo =- EIJ4(7rj)IP -. 0, p > 0 . (18)

By property 1.2.10, p. 16 of Samorodnitsky and Taqqu (1990) for 0 < p < a

E14(7.k)IP = (y,,a). { fT IFw,(u)I*P(du)}

where c(p, a) is a constant that depends on a and p, and hence does not affect the
convergence. Thus (18) follows immediately from Lemma 5 and the proof is complete.
Proof of Theorem 2. By Proposition 3.1 in Szulga (1992) with k = 1, it is clear
that as n -+ 0o, tn(f) converges weakly to the stable integral XFf which in turn is
equal, in distribution, to {4(f), f E Sd} (see Proposition 1). Use the Cram&r-Wold
device (p. 49 of Billingsley, 1968) and the linearity of -@n and @ to complete the proof.

For Sk E ".x define the functional Ff (V,.. . , Vk) as:

Ff,(Vi,... Vk) = f•F,(Vl,...,Vk) ifall k arguments are distinct (19)
' .0 otherwise



Since the probability that any two or more of the paths of the Markov processes V1,

V2,... , V, are identical is zero, it follows that

{.f.(V 1 ,. ,Vk),f, E S} {Ff,(VI, ,Vk), Ik E Sd} (20)

Consider the set fl0 = {w : Vl(w) 9 ... # Vk(w)}. Clearly, P(00l) = 1. Moreover,
when restricted to the set fl0, the functionals Ffk(Vl,...,Vk) and PF,((VI,..., Vk)
are identical. Therefore, for the next two results in this section, we will restrict our
attention to %, and denote the functionals as Ffk(V 1 ,..., ,Vk).
Proof of Proposition 3. The functional F11(VI,..., Vk) is jointly measurable on

x d Since the functions fk(Ui,.. ,uk) = f(ul) .. .f(uk) are dense in Sdi
suffices to prove the Proposition for such fk. Note that in this case

Fk(ul,.. -- ,Uk)-= Ff(Ul)... Ff(U) (21)

Following Kallenberg and Szulga (1989), we set C to be a Poisson process on R\ {0} x T,
with intensity v x p, so that C is constructed from the jumps of the process X. We
denote its symmetrized version by C. Then the following representation of the integral
holds

XkFf' = Ck(LFf,) a.s. (22)

Here L is the operator defined on the space of fumctionals on TA: as

LFfk =- LFf, (ul,...,Uk; -TI,...,tz-k) = -T1 ... xkFfk(Ul,...uk),

where Zi E R \ {O}, ui E T,i 1,..., k and the integral on the right of (22) exists if
Ff1 belongs to the class Z, where

r- = {Ff : CA(LF, )2 < 0 a~s.}Q

Let (hi,.... Ck be independent copies of C and note that by Theorem 3.4 in Kallenberg
and Szulga (1989), the condition Ck(LFft)2 <oo a&s. is equivalent to (I ... (k(LFJf1 )2 <
oo a.s. By the independence of (1,..., CL, (21), and Lemma 2.2 in Kallenberg and
Szulga (1989), this is equivalent to

I R\(O} ((2 F2 A1 ) jx,~u oas

which in its turn follows if the following two conditions hold:

W IT JR\{0} A 1) F2) v(d),u(du) < oo a.s.

(ii)IT JR\{O) ((x2 A 1)(F 2 V 1)) v(d2)p(du) < oo a.s.

Since fR\{O}(_T2 A 1)v(dx) < oo for Lkvy measure v on R \ {0} and (11) holds, (i)-(ii)

are satisfied. Thus, the multiple integral XkFf1 exists. Linearity of T in fk follows
from .the linearity of Ffk. To show that * has a version in (Sdk)' follow the proof of
Proposition 1, keeping in mind that (cf. (1.6) of Kallenberg and Szulga, 1989):

E(C/:(LFk ))2 = k! (V) (V A-m (zI ... k) Jpro (Ak-m (Ff(ul) ... Ff(uk))

M=1 ~



where 1,(Ff(u))2 = fT IFj(u)12 I,(du) = (f, f) < oo. The Proposition is proved.
Proof of Theorem 4. It is clear from Proposition 3.1 in Szulga (1992), the Cram6r-
Wold device, and the linearity of %n(fk) that the finite-dimensional distributions

of the field {'n(f), f-k E St}, converge weakly to those of {XkF'I, fk E S•1, as

n -- * co. The proof i.ow follows immediately from (20) and Proposition 3.

Remark. The above results can be extended in two directions. The first one, which is

quite trivial, is to introduce the parameter 0 > 0, to substitute the Green's function g9

for g wherever it appeared, and to change the exponent e-t to e-Ot in the definitions
(4) and (10). We will denote the resulting fwictionals by 14, and the spaces of the

test functions by dk, 1 --- S•. It is clear that all previous results hold under these

chanCes; we will call the limiting fa ilies of fields {00,0 > 0} and {Ik,0 > 0}
The above results also hold for the case where the fields are indexed by mea-

msres. Let us briefly explain how to construct 1-- Ff (Xii,. .. , Xi) when 7k is a

symmetric measure on Rdk, k _Ž 1, such that

Oa, k)e0 = f m(da)g2 9(a,x)g9 (x,y)-ty(dx)Tyk(dy) < 00. (23)

We denote the class of such measures by M.,k = Mk(gO), M6,1 = Me. Theorem 2.1
in Adler and Epstein (1987) guarantees existence of the functional 4- for each 7yk E

MO,k . If -yk is absolutely continuous with respect to Lebesgue measure with density

fk then Iy-- F!.k" Otherwise, it is constructed as the L2 limit of path integrals of

the form :- + k e-6(t1+' , ( ... , Vk(tk))dtl ... dtk. Here, '4(dx)

, (x)dx, and b', 6 (x) -fRad e-(1+'"+6 k)p 1 (xjv)... p 6,(zk, yk)4ydy). Thus, t6

is a smoothed version of

4. POINT-INDEXED STABLE RANDOM FIELDS

In the previous section we have shown the construction of the stable random
fields indexed by functions f E Sd. We will now show how the same construction
allows us to obtain stable fields on Rd. To do so, we would like to apply-Theorem 2 to

the case of measure -y7(dz) = 6z(z)dz, where z E Rd. Of course, this is possible only

when 7z E M 1, i.e., when (23) holds. This is true, for example, for Brownian motion
on R1 . The corresponding functional Fy.(V) is then the exponentially weighted local
time L=(V) of the process V at point z.

Denote by It,, z E Rd, the stable random field obtained by applying the measure-

variant of Theorem 2 to the sums of the functional Lz(V). Then I'z, z E Rd, has the
integral representation

§(Z) = = IT Lz(u)X(du).

So, whenever the local time of the Markov process exists, we obtain the point-indexed
stable random field {I(x), x E Rd}, z E Rd, with finite-dimensional distributions
given by

Eexp{i ti+,4 } = exp -E >In1  (V)
i-=1

Clearly, when a point-indexed field {1(z), z E Rd} exists, we can always create
a Sd indexed version of it by setting 4(f) = fpd $(z)f(z)dx.

o7



In a similar manner, for those processes for which measure -72 (dx1, dx2 ) =6x(TI)6(ZI - x2 )dxldx2 is of finite norm, one can use exponentially weighted intersec-
tion local times L (VI, V2 ) to define the point-indexed random fields {W(x), x E Rd}
as limits of sums 1i<ii <i n ailai2Yn,ilYni2Lz(ViI, Vi2)" By Theorem 4

5. RENORMALIZABLE STABLE FIELDS

The concept of renormalizability of families of generalized random fields was in-
troduced in Adler and Ep.tein (1987) as an extension of the property of self-similarity.
There the authors considered conditions for existence of this property for some Gaus-
sian families and their multiple integrals. Here we modify their definition of renor-aility to include rescaling of an additional parameter and study this property
for the families of stable fields that are obtained as limits of functionals of the paths
of self-similar Markov processes.

In the following, we will assume that the initial measure of the Markov process

m(dz) = 1B(z)dZ (24)

where B C Rd is a fixed set of finite Lebesgue measure IBI.
Definition. A process V is said to be self-similar with index fP, if for any q > 0, V
and the process

'1
are identical in distribution, where k is a process (on another probability space) which
has the same transition probabilities as V but initial measure fn(dx) = FJ/1B(z)dz.

Note that the initial measure has to be changed and the set B has to be scaled in
order to preserve the distribution of the starting points after scaling V by the factor
q. For any function f(x) on Rdk and r > 0, define

Sf(x) := T-Af(r- Ix). (26)

Lemma 6. Let V be a Markov process which is self-similar with index f, and let
qE Sk, k > 1. Then

FqV,... -, Vk)= q .. 7 T kf (27)

Proof. Using the self-similarity property of V, and then making the change of vari-
ables Iqfti si, we get

4-(V 1 . Vk) = fiR e-e(I+'"+t')q(Vi(tl),... , Vk(tk))dtl ... dtk

,,v,.,+=J e. 
l tk)) d ... dtk

0



with r = k/p. This proves the lemma.
"Let us denote by Xm(.), the SaS Ievy random measure X(.), on (T, T, y), with

control measure pm. The index m indicates that the process V starts according to
the initial measure m. Further, let Xmkf denote the multiple integral of order k, of
the function f with respect to Xm(.). When k = 1, we set x'-f= Xmf. We define
the following two families of stable fields:

*,m-(q) £4(u)Xm(du) (29)

*e1-0 (Tq) F jF?'(u)Xrn(du) (30)

Definition. The family of random fields {1'0m, 0 > 0} is renormalizable with renor-
malizing parameters (T, p) if, for every q > 0,

'60,m 2 r (31)
17

where
7 4,9?1-Pfl(q) - 7 , (q(x) := 7-f'q(7-1x) (32)

If the 40,m are measure indexed, set

e-Im(.) =- 4ei-'Pm (Ty) , r7 (A):=r7-r+dk.y(t?-fA), -yE MOk. (33)17 (7 TI1

Theorem 7. Let (V(t), m) be a self-similar Markov process with index PI, and let
go, 0 > 0, be the corresponding Green fimction. The family of stable random fields
{iflm,' 6>0} is renorinalizable with parameters (/,6,)

Proof. Using (9) and Lemma 6 with r = 6, one obtains:

Eexp {it4'-'fn (flq) } = exp {-I6I'4E IF-'1 ()V)t} -

-~ exI-ItIaE I1~q(V)I}l
-Eexp (it4Oem(q) I ER

and the proof is complete.
Our next result establishes the renormalizability of the family {1qp,rn(fk), 0 > 0}

of multiple integrals of the fields {40m, 0 > 0}.

Theorem 8. Let k > 1. The family {f1@0,m, 6 >0} is renormalizable with parameters
(k#, 16).
Proof. Let "=." denote weak convergence. By Theorem 4,

E ~ ~ ~ ~~ ~~q Iri ""rVYik..ni ••,.,) =T 8Om(qk•) as n -'-+ oo,

l<_is<... <ik <_n

acil ..."'ik Ynit ...Yni k F Ok-01" (Vl...", $Vi,) IF mO-a•( kiqi) as n --+ oo.

l<_ii<... <ik• qn

By Proposition 3, %k,m (q.)=O xm~kF•, %q-q,3(k6qk) = ,k•- and byqk
Lemma 6, F(V1,..., V) ? F' (Vh.-, Vk) Thus, we have.

-,m D q
,,2- qk:



and the theorem is proved.

6. SIMULATION OF STABLE RANDOM FIELDS

Here we provide graphs of some Rd-indexed stable fields for d = 1 and 2. The
siMulations were based on results ef Theorem 2 and discussion in Section 4, which
allow one to build the fields 40, from the sums of functionals of the Markov processes
V. We would like to explain briefly how these simulations were done.

We simulate symmetric random walks Sk on the integer lattice Zd, d = 1,2, i.e.,

S0=0, St =fjI-I...+ Ck, k= 1,2,...,

where, the Ci are i.i.d. Rademacher random variables. Their initial measure is m(dz) =

1B(x)dx, where B C Rd is a fixed set of finite Lebesgue measure IBI to be specified
later. Following a discussion in Dynkin (1988), use the functional of the random walk

WT

Fi,m(S) = I~ E3 ei/mi(-7), ~n
i:=1

to approximate the value of the exponentially weighted local time L, of the Brownian
motion (which exists for d = 1). This is a good choice for several reasons: As
m -- oo, the finite-dimensional distributions of the scaled random walk { SmtI/-/', t E
{0, 1/m, 2/mr,.. .}} on the lattice Zd/Viii converge to those of the Brownian motion
on Rd. We would like to have a functional of S/v1 'm which approximates the functional
of Brownian motion

F1 (V) = j e-t f(V(t))dt. (35)

Since the value e-20 is less than 1 0 -9, for computational purposes we restrict the
interval of integration in (35) to [0, TJ, with T = 20.'Dynkin (1988) gives the approx-
imation as

Tm
Ffm(S) = ei/mf(Si/Vf-).

i=1

In order to obtain point-indexed fields, we replace the function f by the Dirac delta-
function at 1. Finally, we use sums

IWOl :=E iYn,iFj,m(S),

i=1

to approximate values of the stable field -t(l).
For the case d = 1, we have chosen m = 1000, n = 2000, and B = [-1000,1000].

We circularized the interval, i.e., when the random walk wanders off the left hand-
side of [-1000,1000], it immediately reappears at the right hand-side and vice-versa.
To fix the value of m we first obtained graphs of (34) for one fixed realization of
the random walk (but different values of m) and concluded that the graph does not
change much for m > 1000. To choose the value of n we fixed a = 1.95 and m = 1000
and generated independently n = 1500 values of the stable process at a particular
point. This histogram was very similar to the histograms of 1500 values from a SaS
distribution with a = 1.95 and a = 0.014678 generated by the software package Splus.
We also estimated the values of the parameters a and a using a method based on
McCullough (1986). The value of a was close to 1.95 and a = 0.014678.

For d = 2 we took m = 1500, n = 4000 and B = [0,100) x [0,100). As for d = 1,
we circularized the region.

i n



To generate the stable random variates Yn,i that satisfy (2) we followed the
algorithm in Bratley, Fox and Schrage (1987), which generates SaS random variates
with scaling factor a = 1, and then multiplied the values by n-//l. The value of a is
chosen before simulating the stable and Rademacher random variates.

The results of our simulations are presented in Figures 6.1-6.6. Figures 6.1-6.3
present SaS processes O(x), z = I/m, I = -1000, -999,..., 1000 for three values of
the parameter a = 1.1,1.5 and 1.95. The points I = 0 and 2001 on the graphs in the
Figures correspond to the points I = -1000 and z = 1000, respectively. The graphs
of the stable fields O(z), x E [0,100) x [0,100) for a = 1.1, 1.5 and 1.95 are given in
Figures 6.4, 6.5, and 6.6. Each of these figures contains three graphs. The graph at
the top is the graph of the stable random field. The graph at the bottom left is of
the positive values of the field plotted separately; and the graph at the bottom right
isWof the negative values of the field. It is clear from the graphs that when a is close
to 1, the field is fairly flat; as a increases the fields become more peaked.
Acknowledgements: The authors would like to thank Svetlozar Rachev for helpful
discussions of stable distributions and processes. We would like to thank Makoto
Maejima for the excellent lectures on stable processes that he gave at the University
of California, Santa Barbara, and Dr. Jerzy Szulga for sharing the results of his
research with us. We are extremely grateful to Dr. Phillip Feldman for letting us use
his uniform random number generator paclage and also for his invaluable suggestions
at various stages of the simulations. We would also like to thank Dr. Benny Cheng
for providing us with his program which estimates the parameters of an a-stable
distribution.
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